A Demonstration using Low-kt Fatigue Specimens of a Method for Predicting the Fatigue Behaviour of Corroded Aircraft Components
نویسندگان
چکیده
Corrosion is well known to reduce the structural integrity of aluminium alloy aircraft components. In addition, it can cause early fatigue failures in components in which fatigue is not considered to be a life limiting factor. This is because corrosion damage, such as corrosion pits, is up to 100 times the size of the inclusions intrinsic in most aerospace aluminium alloys. The trailing edge flap lug of the F/A-18 Hornet aircraft is an example of an unexpected failure due to corrosion damage. In this report a Monte Carlo model is developed to simulate this phenomenon. This model predicts the fatigue lives of corroded and uncorroded specimens of the aluminium alloy 7010-T7651. It does this using high-quality fatigue crack growth data for this alloy from a previous research project (SICAS) combined with probability density functions for size of the corrosion pits and inclusions in this alloy. The distribution of the predicted fatigue lives is an excellent match for that observed in the SICAS project. The model was then extended to predict the location of fatigue failures. It showed that with good laboratory data the model could very accurately predict the location and life of pittinginduced fatigue failures. RELEASE LIMITATION Approved for public release
منابع مشابه
Degree of Bending (DoB) in Tubular KT-Joints of Jacket Structures Subjected to Axial Loads
The fatigue life of tubular joints commonly found in offshore industry is not only dependent on the value of Hot-spot stress (HSS), but is also significantly influenced by the through-the-thickness stress distribution characterized by the degree of bending (DoB). The determination of DoB values in a tubular joint is essential for improving the accuracy of fatigue life estimation using the stres...
متن کاملEFFECTS OF TENSILE STRENGTH ON FATIGUE BEHAVIOR AND NOTCH SENSITIVITY OF TI-6AL-4V
In this research, rotating bending fatigue test at minimum to maximum stress ratio of R=-1 was used for investigating the fatigue behavior of Ti-6Al-4V alloy. Both smooth and notched specimens, with elastic concentration factor, kt, of approximately 3.6 and 4.1 were used for this purpose.In addition, the effect of variation in ultimate tensile strength, UTS, on the fatigue behavior of this allo...
متن کاملFATIGUE BEHAVIOUR OFA ROLLED AZ31 MAGNESIUM ALLOYS PREPARED BY EPAND BB CONDITIONS
Abstract: Rotating bending fatigue tests have been performed using smooth specimens of a rolled AZ31 magnesium alloy in laboratory air at ambient temperature. Fatigue strength and characteristic was evaluated and fracture mechanism was discussed on the basis fracture surface analysis. Electrical polishing (EP) as well as deep rolling (ball burnishing (BB)) U-notched specimens were performed on ...
متن کاملInfluence of Residual Stress on Fatigue Life of Hot Forged and Shot Blasted Steel Components
Hot forging is a common manufacturing process for the production of large quantities of engineering components. Residual stresses are developed in forged components as a result of various aspects of the manufacturing process, including subsequent cooling, and heat treatment. Residual stresses can significantly affect the deformation and fatigue failure of materials. Hot forged EN15R steel bars ...
متن کاملFatigue Life of Repaired Welded Tubular Joints
In this study, the effect of repair on fatigue life of tubular joints is investigated. Six cracked specimens precedently subjected to fatigue loading undergone to weld repair. Two of those specimens were shot peened before primary fatigue loading. It is shown that repair gives rise to about 150% increase in fatigue life for original specimens while the increase of fatigue life for shot-peened ...
متن کامل